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This paper presents a perturbation method for computing the normal forms of resonant
double Hopf bifurcations with the aid of a computer algebraic system. This technique, based
on the method of multiple time scales, can be used to deal with general n-dimensional
systems without the application of center manifold theory. Explicit iterative formulas have
been derived for uniquely determining the coe$cients of normal forms and associated
non-linear transformations up to an arbitrary order. User-friendly symbolic computer
programs written in Maple have been developed, which can be easily applied for computing
the normal forms of a given system. Examples are presented to show the applicability of the
methodology and the convenience of using the computer software.
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1. INTRODUCTION

Normal form theory has been widely used to simplify the analysis of dynamic behavior of
di!erential equations near an equilibrium [1}3]. The basic idea of the method of normal
forms is to employ successive co-ordinate transformations to systematically construct
a simpli"ed form of the original di!erential equations without changing the fundamental
dynamical behavior of the system in the vicinity of the equilibrium. Normal form theory is
usually applied along with center manifold theory [4]. Center manifold theory is applied
before normal form theory, to obtain a locally invariant small dimensional manifold in the
vicinity of an equilibrium, called center manifold. Although it is easy to construct an
&&abstract'' normal form for a given singularity, it is di$cult to compute the explicit
expressions of a normal form in terms of the coe$cients of the original di!erential
equations. Therefore, the crucial part in computing the normal form of a system is the
computation e$ciency. Moreover, algebraic manipulations become very involved and time
consuming as the order of the normal form increases. The introduction of computer algebra
systems such as Maple, Mathematica, Reduce, etc., becomes necessary at this point.
Recently, many researchers have paid attention to the development of e$cient
computational methods with the aid of computer algebra systems [5}11].

In this paper, a perturbation technique is used to compute the normal forms of
di!erential equations whose Jacobian, evaluated at an equilibrium, has two pairs of purely
imaginary eigenvalues. The ratio of the two eigenvalues is a rational number, giving rise to
resonant oscillations. The perturbation method, combined with multiple time scales, has
been successfully developed for computing normal forms of Hopf bifurcation and other
singularities [7, 12, 13]. It has been shown that the approach is very computationally
0022-460X/01/440615#18 $35.00/0 ( 2001 Academic Press



616 P. YU
e$cient and is simple enough to use by a novice to computer algebra. This technique is
systematic and can be directly applied to the original n-dimensional di!erential equations,
without the application of centre manifold theory. This approach reduces the steps involved
in the application of normal form theory to simultaneously obtain the normal form (on the
center manifold) as well as the associated non-linear transformation.

This paper focuses on the development of the methodology and symbolic software for
computing the normal forms of a double Hopf bifurcation associated with various resonant
cases, including k
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are positive integers) resonances and 1 : 1 primary

resonance. The separate treatment for the two cases is due to di!erent scaling which is
necessary for the application of perturbation techniques. Uniform scaling is used
for the k
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2
) resonant cases while non-uniform scaling has to be applied for

the 1 : 1 resonance to match the perturbation orders. All the formulas derived in this paper
for computing the coe$cients of the normal forms and the non-linear transformations
are given explicitly in terms of the original system coe$cients. This facilitates
direct applications to special problems [8, 10, 14]. Based on the explicit recursive
formulas, user-friendly symbolic software using Maple has been developed. Examples are
presented to show that the perturbation technique is computationally e$cient and
therefore, is particularly useful for computing high-dimensional systems and high order
normal forms.

The k
1
: k
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(k
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2
) resonant cases are described in the next section, while section 3 deals

with 1 : 1 resonant cases. Section 4 outlines the symbolic computer programs, and examples
are presented in section 5. Conclusions are drawn in section 6.

2. PERTURBATION TECHNIQUE AND FORMULATIONS

2.1. k
1
: k

2
RESONANT CASES

Consider a general n-dimensional system described by the following di!erential equation:

x5 "Jx#f(x), x3Rn, f : RnPR
n
, (1)

where Jx represents the linear term, and the non-linear function f is assumed to be analytic;
and x"0 is an equilibrium of the system, i.e., f (0)"0. Further, assume that the Jacobian of
system (1) evaluated at the equilibrium 0 involves two pairs of purely imaginary eigenvalues
$iu

1c
and $iu

2c
. In this section, we assume that

u
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u
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, where k
1

and k
2

are integers, (2)

which is called a k
1
: k

2
resonance. Thus, for the convenience of analysis, we may let u

1c
"

k
1
u and u

2c
"k

2
u, and further, without loss of generality, we may assume that u"1.

(Otherwise, one may use a time scaling t@"ut to scale the frequency u to 1.) Consequently,
the Jacobian matrix of system (1) evaluated at the equilibrium, x"0, can be assumed
(with the aid of linear transformation if necessary) in the Jordan canonical form, to be

J"

0 k
1

0 0 0

!k
1

0 0 0 0

0 0 0 k
2

0

0 0 !k
2

0 0

0 0 0 0 A

, A3R(n~4)](n~4), (3)
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such that k
1
(k

2
. Here A is hyperbolic, i.e., all of its eigenvalues have non-zero real parts,

with either a real or complex conjugate. For physically interesting cases, the unstable
manifold is assumed to be empty, i.e., all the eigenvalues of A have negative real parts. Let us
rewrite system (1) in component form as

xR
1
"k

1
x
2
#f

1
(x), xR

2
"!k

1
x
1
#f

2
(x), (4)

xR
3
"k

2
x
4
#f

3
(x), xR

4
"!k

2
x
3
#f

4
(x), (5)

xR
p
"!a

p
x
p
#f

p
(x) (p"5, 6,2 , m

1
#4), (6)
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q
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q
x
q
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q
x
q`1

#f
q
(x),
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q`1
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q
x
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q
x
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#f
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(x) (q"m
1
#5, m

1
#7,2, n!1), (7)

where a
p
'0, a

q
'0, u

q
'0, and 4#m

1
#2m

2
"n. Equations (4)}(7) show that the matrix

A has m
1

real eigenvalues, !a
p
, p"1, 2,2, m

1
, and m

2
pairs of complex conjugate

eigenvalues, !a
q
$iu

q
, q"1, 2,2, m

2
. The functions f

i
(x) satisfy f

i
(0)"0 and

L f
i
(0)/Lx

j
"0, i, j"1, 2,2, n. That is, the Taylor expansion of f

i
(x) about x"0 starts with

quadratic terms.
The underlying idea of the method of multiple scales is to consider the expansion of

representing the response as a function of multiple independent variables, or scales, instead
of a single time variable. This can be achieved by introducing new independent variables
according to

¹
k
"ekt, k"0, 1, 2,2 . (8)

It follows that the derivatives with respect to t now become expansions in terms of the
partial derivatives with respect to ¹

k
, given by

d

dt
"

d¹
0

dt

L
L¹
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#
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1

dt

L
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#
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L
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#eD

1
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2
#2, (9)

where the di!erentiation operator D
k
"L/L¹

k
.

Now suppose that the solution of equation (1) (or equivalently, equations (4)}(7)) in the
neighborhood of x"0 is represented by an expansion of the form

x
i
(t; e)"ex

i1
(¹

0
, ¹

1
,2)#e2x

i2
(¹

0
, ¹

1
,2)#2 (i"1, 2,2, n). (10)

Note that the number of independent time scales needed depends on the order to which the
expansion is carried out. In general, to "nd a normal form up to an order n, ¹

0
, ¹

1
,2, ¹

n
should be used in solution (10). However, one can employ the idea of the intrinsic harmonic
balance (IHB) technique [15] and let n be open so that the process of the method will take
into account all essential terms up to the required order, as seen in the following procedure.

Substituting solution (10) into equations (4)} (7) with the aid of equation (9) and balancing
the like powers of e results in the perturbation equations in the order given:
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etc., where f
i2
"(d2/de2) [ f

i
(x

1
)]e/0

are functions of x
i1

(i"1, 2,2 , n) which have been
obtained from the e1 order perturbation equations (11)}(14). In general, functions f

ik
only

involve the variables which have been solved from the previous 1, 2,2, (k!1) order
perturbation equations.

To "nd the solutions of the e1 order equations (11)} (14), "rst note that these equations
can be divided into two groups, one of which consists of the "rst four equations given in
equations (11) and (12), and the other one includes the remaining equations. The former
group is associated with the critical eigenvalues (having zero real parts), and the latter
corresponds to the non-critical eigenvalues (having non-zero real parts). Second, the "rst
order solutions for the variables of the second group are obtained only from the "rst four
variables x

1
, x

2
, x

3
and x

4
, since the perturbation technique is based on the assumed

asymptotic solution (10). However, it is interesting to note that the normal form obtained
based on equation (10) not only represents the asymptotic behavior, but also the transient
property of the system.

Now consider equation set (11). Di!erentiating the "rst equation of equation (11) and
then substituting the second equation of equation (11) into the resulting equation yields
a simple second order ordinary di!erential equation,

D2
0
x
11
#k2

1
x
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"0. (19)

The solution of equation (19) can be written in a general form as
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where r
1
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1

represent, respectively, the amplitude and phase of motion, and
h
1
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1
¹
0
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1
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is determined, x
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can be directly solved from the "rst equation

of equation (11). Note that solution (20) implies that

D
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1
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since r
1

and /
1

do not contain the variable ¹
0
. (Remember that D

0
denotes di!erentiation

with respect to ¹
0
.) Similarly, we can obtain solutions from equation (14) as follows:
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and

D
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r
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"0 and D

0
/
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"0. (23)
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x
41

can be determined from the "rst equation of equation (12) after x
31

is solved. The
asymptotic e1 order solutions of the second group, described by equations (13) and (14), are
obviously given by

x
i1
"0, i"5, 6,2 , n, (24)

which actually represent the "rst order steady state solutions of the second group equations.
Next, to solve the e2 order perturbation equations (15)}(18), the procedure described

above can be applied. Thus, di!erentiating the "rst equation of equation (15) and then
substituting the second equation of equation (15) into the resulting equation results in
a non-linear homogeneous ordinary di!erential equation:

D2
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. (25)

Then, substituting the solutions x
11

and x
21

into the right-hand side of equation (25)
gives an expression in terms of the trigonometric functions cos k¹

0
and sin k¹

0
. To

eliminate possible secular terms which may appear in the solution of x
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that the coe$cients of the two terms cos k

1
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1
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in turn yields the explicit solutions for the derivatives D
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1
. Then, the solution
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can be found from the remaining terms of equation (23), and thus, x
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only a particular solution. Having found x
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1
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can be carried out to higher order perturbation equations, and thus we can "nd D
1
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D
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/
2
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, etc. Finally, the normal forms, given in polar co-ordinates, can be

written as
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(29)

where the back scaling er
i
Pr

i
(i.e., ex

i
Px

i
) has been used (or simply set e"1). It should be

pointed out here that the particular solutions of equation (25), etc., can be found by using
the IHB method [15] so that the solution is uniquely determined. Thus, D

i
r
j

and D
i
/
j

( j"1, 2) are also uniquely de"ned, which implies that the normal form given in equations
(26)}(29) are actually uniquely determined. It is also noted that, unlike the non-resonant
case, in which the derivatives D

i
r
j
and D

i
/
j
are functions of r

1
and r

2
only, here they are

given explicitly in terms of amplitudes r
1
, r

2
and phase k

2
h
1
!k

1
h
2
.
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2.2. 1 : 1 RESONANT CASE

Again, consider system (1), but now the Jacobian evaluated on the equilibrium x"0 is
given by

J"

0 u 0 1 0

!u 0 0 0 1

0 0 0 u 0

0 0 !u 0 0

0 0 0 0 A

, A3R(n~4)](n~4), (30)

where u can be assumed as u"1 if a time scaling t@"ut is applied. Note that this is called
the non-semisimple case since two 1's are present in J.

This resonant case is quite similar to the resonant cases discussed in section 2.1. The only
di!erence for this particular case is that unlike a general k

1
: k

2
(k

1
Ok

2
) resonance, we

cannot use a uniform scaling x
i
Pex

i
to obtain the ordered perturbation equations. It is

straightforward to show that a uniform scaling leads to the solution of non-linear
di!erential equations at the "rst perturbation order. This di$culty is due to the
non-semisimple resonance, that is, linear terms x

3
and x

4
are present in the "rst and second

equations (see the Jacobian given by equation (30)). In order for the perturbation technique
to work on the 1 : 1 non-semisimple resonant case, we must use di!erent scalings between
x
1
, x

2
and other variables, x

i
, i"3, 4, 5,2 , n. A careful consideration shows that the ratio

of the perturbation order for x
1
, x

2
and the remaining variables should be 2 : 3. Thus, let

x
1
Pe2x

1
, x

2
Pe2x

2
, x

i
Pe3x

i
, i"3, 4,2 , n. (31)

Then, unlike the k
1
: k

2
(k

1
Ok

2
) resonances, where the highest degree of harmonics at an

order k is consistently equal to k#1, now the kth order terms in the original di!erential
equations may spread into di!erent order ('k) perturbation equations due to the di!erent
scalings. However, it can be shown that the highest order of the perturbation equation
which should be included for the original kth order terms is 3k!2. Therefore, the highest
degree of the harmonics for each kth order must be 3k!2. In other words, if an nth order
normal form is needed, then the perturbation equations up to 3n!2 order must be
considered. Once this scaling is applied and the solution form is appropriately set, then
a solution procedure similar to that presented in section 2.1 can be obtained and the
formulas similar to that given in section 2.1 can be found.

It should be noted, unlike for the k
1
: k

2
(k

1
Ok

2
) resonant cases, a kth order normal form

and the associated non-linear transformations (solutions) obtained for this 1 : 1 case may
involve higher order terms which actually do not belong to the kth order expression. This is
due to the di!erence in scaling. This suggests that the di!erence in scaling has caused the
lower order terms to spread into higher order perturbation equations, and has caused
higher order terms to appear in lower order ((3n!2) perturbation equations. This is the
fundamental di!erence between the 1 : 1 primary resonance and the k

1
: k

2
(k

1
Ok

2
)

resonance. In order to remove the terms which do not belong to the nth order normal form,
one may just easily truncate the normal form and solutions up to nth order. (Note: here the
order means the order of the original di!erential equations.) This redundant calculation
increases the complexity and the time required for the computation.

It is interesting to note that the normal form obtained using the perturbation technique
via di!erent scalings actually agree with that found by using other theories and methods
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such as PoincareH normal form theory and the IHB technique. This will be demonstrated by
the examples presented in section 4.

3. OUTLINE OF THE SYMBOLIC COMPUTATION

All the formulas presented in the previous section are given explicitly in terms of the
coe$cients of the original di!erential equations, and thus can be easily implemented using
a computer algebraic system. Maple has been used to code these explicit formulas. In this
section, we shall outline the Maple programs.s

3.1. MAPLE SOURCE CODE

(1) Read a prepared input "le. The input "le provides the original di!erent equations,
with the number of non-zero real eigenvalues, N

1
, and the number of the pairs of

complex conjugate eigenvalues, N
2
, as well as the order for computing the normal

form, norder.
(2) Create procedures.
* The procedure Findcoef for computing all the coe$cients of harmonics in terms of

cos (mh
1
#nh

2
) and sin (mh

1
#nh

2
) for a given trigonometric function F.

* The procedure solu1A
}
B for computing the coe$cients of harmonics in solutions

x
i
, i"1, 2, 3, 4 (corresponding to the center manifold) using the method of

harmonic balancing.
* The procedure solu2A

}
B for computing the coe$cients of harmonics in solutions

x
i
, i"5, 6,2, N

1
#4 (corresponding to the non-zero real eigenvalues) using the

method of harmonic balancing.
* The procedure solu3A

}
B for computing the coe$cients of harmonics in solutions

x
i
, i"N

i
#5, N

1
#6,2, N

1
#2]N

2
(corresponding to the complex conjugate

eigenvalues) using the method of harmonic balancing.
(3) Create the main procedure solution for computing the normal form and non-linear

transformation (i.e., periodic solution).
* Establish ordered perturbation equations f

i
by separating the original di!erential

equations Dx
i
according to the powers of e.

* Create the formal solutions for x
i
, i"1, 2, 3, 4, given in terms of basic

trigonometric functions.
* Call the procedure Findcoef to "nd the harmonic coe$cients of the original

di!erential equations after the formal solutions are used.
* Find the normal form terms D

n
r
1
, D

n
p
1
, D

n
r
2
, D

n
p
2

by eliminating the secular
terms.

* Call the procedure solu1A
}
B to "nd the solutions for x

i
, i"1, 2, 3, 4.

* For the part associated with the non-zero real eigenvalues, call the procedure
Findcoef "rst and then the procedure solu2A

}
B to obtain the solutions for x

i
,

i"5, 6,2 , N
1
#4.

* For the part associated with the complex conjugate eigenvalues, call the
procedure Findcoef "rst and then the procedure solu3A

}
B to solve the solutions

for x , i"N #5, N #6,2 , N #2]N .
sThe Maple source codes and sample computer input "les can be found from the author's website:
http://pyu1.apmaths.uwo.ca/pyu/software. The source code name is program5 and the name of the sample input
"le is input5.

i 1 1 1 2



TABLE 1

Input ,le to Maple source code

N1 :" 1:
N2 :" 1:
N :" 4#N1#N2*2:
norder :" 4:
case :" 10:
Dx[1] :" omg1*x[2]#x[1] L 2#x[1]*x[3]#2/3*x[3]*x[4]#x[4]*x[5]:
Dx[2] :"!omg1*x[1]#2*x[4] L 2#x[5] ( 2#1/2*x[1]*x[2]#x[2]*x[4]:
Dx[3] :" omg2*x[4]#4*x[3] L 2#x[5] ( 2#x[1]*x[2]:
Dx[4] :"!omg2*x[3]#2*x[2] L 2#x[3]*x[4]#x[3]*x[5]:
Dx[5] :"!x[5]#x[2] ( 2#1/3*x [2] *x[4]:
Dx[6] :"!x[6]#x[7]#x[2] ( 2#5*x[1]*x[3]:
Dx[7] :"!x[6]!x[7]#2/5*x[1] ( 2:
if case"11 then

omg1 :"1:
omg2 :"2:
Dx[1] :"Dx[1]#x[3]:
Dx[2] :"Dx[2]#x[4]:

else
omg1 :"2:
omg2 :"3:

":
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(4) Transform the original di!erential equations into the summation of ordered terms by
introducing perturbation parameter e.

(5) Transform the original variables x
i

into the summation of ordered terms by
introducing perturbation parameter e.

(6) Set the zero order solutions x
i0

and zero order normal form terms D
0
r
1
, D

0
p
1
, D

0
r
2
,

D
0
p
2
.

(7) Call the main procedure solution to obtain the normal form and solutions for an
arbitrary perturbation order n.

(8) Write the normal form dr1, dp1, dr2, dp2 into the output "le &&Nform''.

3.2. CREATE THE INPUT FILE

(1) Set the variables:
N1*the number of the non-zero real eigenvalues of the Jacobian.
N2*the number of pairs of complex conjugate eigenvalues of the Jacobian.
N2the dimension of the system.
norder2the order of normal forms to be computed.

(2) Create the vector "eld, i.e., the functions Dx
i
, i"1, 2,2 , n; n"4#N

1
#2N

2
, the

dimension of the system.

As an example, the input "le for the third example (2 : 3 resonant case) given in the next
section is shown in Table 1.

4. EXAMPLES

In this section, three examples are presented to show the applicability of the method and
the e$ciency of the Maple programs. The "rst two examples are chosen from the problems
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which have been studied before, in order to verify the results obtained using the programs
developed in this paper. The third example is used to demonstrate the computational
e$ciency of the Maple programs for computing high order normal forms of
a higher-dimensional system. All the results including the normal forms and corresponding
non-linear transformations are obtained by executing the Maple programs on a PC
(PENTIUM III-700MMX 256K system).

4.1. EXAMPLE 1 FOR 1 : 2 RESONANCE

Consider the following four-dimensional general system, described by

x5 "Jx#f (x, l), x3R4, l3R2, (32)

where l is a two-dimensional vector parameter called perturbation parameter (unfolding),
and the Jacobian is given by

J"

0 u
1c

0 0

!u
1c

0 0 0

0 0 0 u
2c

0 0 !u
2c

0 (x"0, l"0),

(33)

satisfying u
1c

/u
2c
"1 : 2. Thus, we may assume that u

1c
"1 and u

2c
"2. This example was

studied before using the IHB technique [16]. Since our interest here is focused on the
computation of the normal form, we may ignore the perturbation parameter l (or simply set
l"0). The general normal form up to second order was obtained using the IHB method in
reference [16] as

dr
1

dq
1

"r
1
r
2
(A cosU#B sinU), r

1

d/
1

dq
1

"r
1
r
2
(B cosU!A sinU),

dr
2

dq
2

"r2
1
(C cosU#D sinU), r

2

d/
2

dq
2

"r2
1
(!D cosU#C sinU), (34)

where U"2/
1
!/

2
, and

A"1
4

[( f
113

!f
223

)#( f
124

#f
214

)], C"1
4

[( f
114

!f
224

)!( f
123

#f
213

)],

C"1
4

[( f
311

!f
322

)#( f
412

#f
421

)], D"1
4

[( f
411

!f
422

)!( f
312

#f
321

)], (35)

in which f
ijk
"L f

i
(0, 0)/Lx

j
Lx

k
for f"( f

1
, f

2
, f

3
, f

4
)T. Note that the scaled times

q
2
"2q

1
,2q, and q

k
"u

k
t.

Now rewrite equation (32) in the expanded form

x5 "Jx#Q(x)#2, (36)

where Q(x)"(q
1
, q

2
, q

3
, q

4
)T represents the quadratic terms with

q
i
"1

2
f
111

x2
1
#1

2
f
122

x2
1
#1

2
f
133

x2
3
#1

2
f
144

x2
4
#f

112
x
1
x
2
#f

113
x
1
x
3

#f
114

x
1
x
4
#f

123
x
2
x
3
#f

124
x
2
x
4
#f

134
x
3
x
4

(i"1, 2, 3, 4). (37)
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Then executing the Maple program developed in this paper yields the following normal
form:

dr
1

dt
"!r

1
r
2
(A cosW#B sinW ), r

1

dh
1

dt
"r

1
!r

1
r
2
(B cosW!A sin W),

dr
2

dt
"!

1

2
r2
1
(C cosW#D sinW ), r

2

dh
2

dt
"2r

2
!

1

2
r2
1
(!D cosW#C sinW), (38)

where A, B, C and D are given in equation (35), and W"h
2
!2h

1
. One can show that

equation (38) is actually identical to equation (34) by noting the di!erent time scales, and the
phase di!erence between system (38) and (34) (due to the di!erent notations used in the
Maple program), which is !n/2. This indicates that the results obtained in this paper using
the multiple scales are the same as those given by a di!erent method such as the IHB
technique [16].

Here, it should be pointed out that the Maple program developed in this paper can be
employed to "nd normal forms up to an arbitrary order as long as the machine memory is
allowed. However, for the IHB method, only the form up to the leading order terms is
correct. For example, for the 1 : 2 resonant case, it can be shown that, in general, the normal
form obtained using the IHB approach is correct only up to the second order.

4.2. EXAMPLE 2 FOR 1 : 1 RESONANCE

The double pendulum system shown in Figure 1 consists of two rigid weigthless links of
equal length l which carry two concentrated masses 2m and m respectively. A follower force
P
1

and a constant directional force (vertical) P
2

are applied to this system. This system has
been studied by many authors for di!erent types of bifurcations (e.g., see references
[14, 17]).
Figure 1. A double pendulum system.
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The system energy for the three linear springs h
1
, h

2
and h

3
is assumed to be given by [17]

<"1
2
[(h

1
#h

2
#h

3
l2 )h2

1
#2(h

3
l2!h

2
)h

1
h
2
#(h

2
#h

3
l2 )h2

2
]!1

6
h
3
l2(h

1
#h

2
) (h3

1
#h3

2
),

(39)

where h
1

and h
2

are the generalized co-ordinates which specify the con"guration of the
system completely.

The kinetic energy ¹ of the system is expressed by

¹"

ml2

2X2
[3hQ 2

1
#hQ 2

2
#2hQ

1
hQ
2
cos (h

1
!h

2
)], (40)

where X is an arbitrary value rendering the time variable non-dimensional, and the overdot
denotes di!erentiation with respect to the non-dimensional time variable q and q"Xt.

The components of the generalized forces corresponding to the generalized co-ordinates
h
1

and h
2

may be written as

Q
1
"P

1
l sin (h

1
!h

2
)#2P

2
l sin h

2
, Q

2
"P

2
l sin h

2
(41)

and the damping can be expressed by

D"1
2
[d

1
hQ 2
1
#d

2
(hQ

1
!hQ

2
)2]#1

4
[d

3
hQ 4
1
#d

4
(hQ

1
!hQ

2
)4], (42)

where d
1

and d
2

represent the linear parts, while d
3

and d
4

describe the non-linear parts.
With the aid of the ¸agrangian equations, in addition, choosing the state variables

z
1
"h

1
, z

2
"hQ

1
, z

3
"h

2
and z

4
"hQ

2
(43)

and by rescaling the coe$cients to be dimensionless coe$cients as

f
1
"

h
1
X2

ml2
, f

2
"

h
2
X2

ml2
, f

3
"

h
3
X2

m
, f

4
"

P
1
X2

ml
, f

5
"

P
2
X2

ml
,

f
6
"

d
3
X4

ml2
, f

7
"

d
4
X4

ml2
, g

1
"

d
1
X2

ml2
, g

2
"

d
2
X2

ml2
, (44)

one can derive a set of "rst order di!erential equations up to third order terms as follows:

dz
1

dq
"z

2
,

dz
2

dq
"!(1

2
f
1
#f

2
!1

2
f
4
!f

5
) z

1
!(1

2
g
1
#g

2
) z

2
#( f

2
!1

2
f
4
!1

2
f
5
) z

3
#g

2
z
4

#(1
4

f
1
#3

4
f
2
!1

3
f
4
!2

3
f
5
) z3

1
!(3

4
f
2
#1

2
f
3
!1

3
f
4
! 7

12
f
5
) z3

3
#f

7
z3
4

!(1
2

f
6
#f

7
) z3

2
#(1

4
g
1
#3

4
g
2
) z2

1
z
2
!(1

2
f
1
#9

4
f
2
!1

2
f
3
!f

4
!3

2
f
5
) z2

1
z
3

!3
4

g
2
z2
1
z
4
!1

2
z
1
z2
2
#1

2
z2
2
z
3
#3 f

7
z2
2
z
4
#(1

4
f
1
#9

4
f
2
!f

4
!3

2
f
5
)z

1
z2
3

#(1
4

g
1
#3

4
n
2
) z

2
z2
3
!3

4
g
2
z2
3
z
4
!1

2
z
1
z2
4
!3 f

7
z
2
z2
4
#1

2
z
3
z2
4

!( 1
2

g
1
#3

2
g
2
) z

1
z
2
z
3
#3

2
g
2
z
1
z
3
z
4
,
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dz
3

dq
"z

4
,

dz
4

dq
"(1

2
f
1
#2 f

2
!f

3
!1

2
f
4
!f

5
) z

1
#(1

2
g
1
#2g

2
)z

2
!( 2 f

2
#f

3
!1

2
f
4
!3

2
f
5
) z

3

!2 g
2
z
4
!(1

2
f
1
#5

4
f
2
!1

6
f
3
! 7

12
f
4
!7

6
f
5
) z3

1
#(5

4
f
2
#7

6
f
3
! 7

12
f
4
!f

5
) z3

3

#(1
2

f
6
#2 f

7
) z3

2
!2f

7
z3
4
!(1

2
g
1
#5

4
g
2
) z2

1
z
2
#5

4
g
2
z2
1
z
4
#3

2
z
1
z2
2

#( f
1
#15

4
f
2
!1

2
f
3
!7

4
f
4
!11

4
f
5
)z2

1
z
3
!(1

2
f
1
#15

4
f
2
!1

2
f
3
!7

4
f
4
!5

2
f
5
)z

1
z2
3

!3
2
z2
2
z
3
!6 f

7
z2
2
z
4
!(1

2
g
1
#5

4
g
2
) z

2
z2
3
#5

4
g
2
z2
3
z
4
#1

2
z
1
z2
4

#6 f
7
z
2
z2
4
!1

2
z
3
z2
4
#(g

1
#5

2
g
2
) z

1
z
2
z
3
!5

2
g
2
z
1
z
3
z
4
, (45)

where f
i
*0 (for i"1, 2, 3) due to physical conditions, and g

1
and g

2
are used to indicate

the system parameters. Note that g
1

and g
2

represent the linear parts of the damping,
assumed to be non-negative.

We choose a critical point de"ned by

g
1c
"g

2c
"0 (46)

and the parameter values

f
1
"10, f

2
"2, f

3
"5, f

4
"!6, f

5
"8, f

6
"!14, f

7
"30, (47)

at which the Jacobian of equation (45) has non-semisimple double imaginary eigenvalues:

j
1
"I, j

2
"!I, j

3
"I, j

4
"!I. (48)

This 1 : 1 resonant case has been studied in reference [14], where the normal form was
obtained using PoincareH normal form theory. In the following, we list the two normal forms
for a comparison. The Maple program developed in reference [9] based on PoincareH
normal form theory can be applied to "nd the following normal form for system (45) up to
third order, given in polar co-ordinates:

rR
1
"r

2
cos (t), r

1
hQ
1
"r

1
#r

2
sin (t),

rR
2
"21 r2

1
r
2
!5r3

1
cos (t)#

21

2
r3
1
sin (t)!58 r

1
r2
2
cos (t)#63 r

1
r2
2
sin (t)

!21 r2
1
r
2
cos (2t)#r2

1
r
2
sin (2t),

r
2
hQ
2
"r

2
!22r2

1
r
2
#

21

2
r3
1
cos (t)#5 r3

1
sin (t)

#63 r
1
r2
2
cos (t)#58 r

1
r2
2
sin (t)#r2

1
r
2
cos (2t)#

21

2
r2
1
r
2
sin (2t), (49)

where the phase di!erence t"h
2
!h

1
. Note that these four di!erential equations are not

independent, and can be reduced to three independent equations by combining the second
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and fourth equations to form an equation for tQ . Note that since normal forms are generally
not unique, equation (49) only represents one of the normal forms.

Similarly, we can execute the Maple program developed in this paper based on the
method of multiple scales to obtain the normal form:

rR
1
"r

2
cos (t)!

21

2
r3
1
!

105

4
r
1
r2
2
#

83

4
r2
1
r
2
cos (t)!

315

8
r2
1
r
2
sin (t)

#

131

16
r3
2
cos (t)#

22347

32
r3
2
sin (t)#

21

2
r
1
r2
2
cos (2t)!31 r

1
r2
2
sin (2t),

r
1
hQ
1
"r

1
#r

2
sin (t)!9r3

1
!12 r

1
r2
2
!

63

8
r2
1
r
2
cos (t)#

129

4
r2
1
r
2
sin (t)

!

22347

32
r3
2
cos (t)#

131

16
r3
2
sin (t)#31 r

1
r2
2
cos (2t)#

21

2
r
1
r2
2
sin (2t),

rR
2
"41 r2

1
r
2
!

1971

4
r3
2
!5r3

1
cos (t)#

21

2
r3
1
sin(t)

#

21

2
r
1
r2
2
cos (t)!

53

4
r
1
r2
2
sin (t)!

21

2
r2
1
r
2
cos (2t)#10 r2

1
r
2
sin (2t),

r
2
hQ
2
"r

2
!4r2

1
r
2
!

63

4
r3
2
#

21

2
r3
1
cos (t)#5 r3

1
sin (t)

#

189

8
r
1
r2
2
cos (t)#

71

4
r
1
r2
2
sin (t)#10r2

1
r
2
cos (2t)#

21

2
r2
1
r
2
sin (2t). (50)

It is obvious from equations (49) and (50) that the normal form obtained using the multiple
scales has more terms than that obtained using PoincareH normal form theory. However, the
normal forms obtained using the two di!erent methods for the non-resonance and all
resonant cases (except for the 1 : 1 resonance) have been found to actually have the same
number of terms up to a "xed order. The di!erence that appeared in the 1 : 1 resonance is
due to the fact that the approach of multiple scales chooses a "xed basis and thus the form is
uniquely determined at each order, while in applying PoincareH normal form theory, the
form is not uniquely determined and one may select a di!erent basis which may result in
di!erent number of terms. However, we can show that normal form (50) is equivalent to
normal form (49). In other words, we can "nd a third order near identity non-linear
transform which transforms equation (50) into equation (49). The proof is given in Appendix
A. Further, it can be shown that we may use additional undetermined coe$cients, the
so-called relaxing parameter approach which has been applied to compute the simplest
normal forms [18], in the process of calculating the normal form to directly "nd the normal
form for the 1:1 resonance given in the form of equation (49). This will be discussed in more
detail in a di!erent paper.

Since the bifurcation analysis results obtained from equation (49) have been veri"ed by
a numerical approach performed based on the original system (45) [14], we will not repeat
the numerical simulation here to verify equation (50).



628 P. YU
4.3. EXAMPLE 3 FOR 2 : 3 RESONANCE

In order to further demonstrate the e$ciency of the Maple program for computing high
order normal form of higher-dimensional systems without applying center manifold theory,
consider the following seven-dimensional system:

xR
1
"u

1
x
2
#x2

1
#x

1
x
3
#2

3
x
3
x
4
#x

4
x
5
,

xR
2
"u

1
x
1
#2x2

4
#x2

5
#1

2
x
1
x
2
#x

2
x
4
,

xR
3
"u

2
x
4
#4x2

3
#x2

5
#x

1
x
2
,

xR
4
"!u

2
x
3
#2x2

2
#x

3
x
4
#x

3
x
5
,

xR
5
"!x

5
#x2

2
#1

3
x
2
x
4
,

xR
6
"!x

6
#x

7
#x2

2
#5x

1
x
3
,

xR
7
"!x

6
!x

7
#2

5
x2
1
. (51)

Executing the Maple program on a PC (PENTIUM III-700MMX 256K system) takes
about 27 min to obtain the normal form up to 10th order. The normal form up to sixth
order is given below

rR
1
"

29

84
r3
1
#

29

104
r
1
r2
2
#

12713

78336
r2
1
r2
2
cos (t)#

24143

19584
r2
1
r2
2
sin (t)

#

23630620163

22368648960
r5
1
#

138177606761

681135436800
r3
1
r2
2
#

177068030053

49695085440
r
1
r4
2

!

3174158149507271

10440611639377920
r4
1
r2
2
cos(t)#

2404182693451369

1305076454922240
r4
1
r2
2
sin (t)

#

79586782468307866859

55648460037884313600
r4
1
r2
1
cos (t)!

8438641581728237917

55648460037884313600
r2
1
r4
2
sin (t),

r
1
hQ
1
"2r

1
!

313

1344
r3
1
!

263

2184
r
1
r2
2
!

24143

19584
r2
1
r2
2
cos(t)#

12713

78336
r2
1
r2
2
sin(t)

!

4053892009

58432389120
r5
1
#

7248108167809

2043406310400
r3
1
r2
2
#

12602271904219

12986982328320
r
1
r4
2

!

373702778230261

522030581968896
r4
1
r2
2

cos (t)#
23211401849611067

10440611639377920
r4
1
r2
2
sin (t)

#

8438641581728237917

55648460037884313600
r2
1
r4
2
cos (t)#

79586782468307866859

55648460037884313600
r2
1
r4
2
sin (t),
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rR
2
"

41

42
r2
1
r
2
#

1258879

1268064
r3
1
r
2
cos (t)#

868757

2536128
r3
1
r
2
sin (t)

!

2000235383

1091563200
r4
1
r
2
#

2427640143403

1260100558080
r2
1
r3
2
!

39909823

49230720
r5
2

#

629839075170792271

278996344363376640
r5
1
r
2

cos (t)!
3982767058488934319

1673978066180259840
r5
1
r
2
sin (t)

#

1000025370085244051

176767944831878400
r3
1
r3
2
cos (t)!

221984821019707783

282828711731005440
r3
1
r3
2
sin (t),

r
2
hQ
2
"3r

2
!

5

84
r2
1
r
2
!

5

8
r3
2
#

868757

2536128
r3
1
r
2
cos (t)!

1258879

1268064
r3
1
r
2
sin (t)

#

19758721

30321200
r4
1
r
2
!

23095337868209

6930553069440
r2
1
r3
2
#

8592833

16410240
r5
2

!

3982767058488934319

1673978066180259840
r5
1
r
2
cos (t)!

629839075170792271

278996344363376640
r5
1
r
2
sin (t)

!

29817963307132463

68743089656841600
r3
1
r3
2
cos (t)!

2692641827024565277

1583840785693630464
r3
1
r3
2
sin (t), (52)

where t"2h
2
!3h

1
.

5. CONCLUSIONS

A perturbation technique and Maple computer programs have been developed for
computing the explicit normal forms of resonant double Hopf bifurcations. For a given
arbitrary n-dimensional system, this approach does not require the application of center
manifold theory, which has been included in the perturbation technique so that the normal
form on the center manifold and the associated non-linear transformations can be obtained
simultaneously. The formulas are given in an explicit iterative procedure, and thus are
implemented using computer algebra. Maple programs have been developed for
automating the computations. Examples are presented to verify the method and to show
that the method is computationally e$cient, which is particularly useful for
high-dimensional systems and higher order normal forms.
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APPENDIX A: THE PROOF FOR EXAMPLE 2

To prove that normal form (50) obtained using the multiple scales is equivalent to normal
form (49) obtained using PoincareH normal form theory, we "rst transform the two normal
forms, which are given in polar co-ordinates, into Cartesian co-ordinates. To achieve this,
applying the transformation
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to equation (50) yields

xR
1
"x

2
#x

3
!

21

2
x3
1
!9x3

2
#

131

16
x3
3
!

22347

32
x3
4
!9x2

1
x
2
#

83

4
x2
1
x
3
#

315

8
x2
1
x
4

!

21

2
x
1
x2
2
#

129

4
x2
2
x
3
!

63

8
x2
2
x
4
!

63

4
x
1
x2
3
!43x

2
x2
3
!

22347

32
x2
3
x
4
!

147

4
x
1
x2
4

#19x
2
x2
4
#

131

16
x
3
x2
4
!

189

4
x
1
x
2
x
3
!

23

2
x
1
x
2
x
4
#62x

1
x
3
x
4
#21x

2
x
3
x
4
,



NORMAL FORMS FOR DOUBLE HOPF BIFURCATION 631
xR
2
"!x

1
#x

4
#9x3

1
!

21

2
x3
2
#

22347

32
x3
3
#

131

16
x3
4
!

21

2
x2
1
x
2
#

63

8
x2
1
x
3
#

129

4
x2
1
x
4

#9x
1
x2
2
!

315

8
x2
2
x
3
#

83

4
x2
2
x
4
!19 x

1
x2
3
!

147

4
x
2
x2
3
#

131

16
x2
3
x
4
#43x

1
x2
4

!

63

4
x
2
x2
4
#

22347

32
x
3
x2
4
!

23

2
x
1
x
2
x
3
#

189

4
x
1
x
2
x
4
#21x

1
x
3
x
4
!62x

2
x
3
x
4
,

xR
3
"x

4
!5x3

1
#

21

2
x3
2
!

1971

4
x3
3
!

63

4
x3
4
#

21

2
x2
1
x
2
#

63

2
x2
1
x
3
!14x2

1
x
4

!5x
1
x2
2
#

105

2
x2
2
x
3
#6x2

2
x
4
!

53

4
x
1
x2
3
#

735

8
x
2
x2
3
!

22347

32
x2
3
x
4
!

71

4
x
1
x2
4

#

189

8
x
2
x2
4
!

1971

4
x
3
x2
4
#20x

1
x
2
x
3
!21x

1
x
2
x
4
!

273

4
x
1
x
3
x
4
#

9

2
x
2
x
3
x
4
,

xR
4
"!x

3
!

21

2
x3
1
!5x3

2
#

63

4
x3
3
!

1971

4
x3
4
!5x2

1
x
2
!6x2

1
x
3
#

105

2
x2
1
x
4

!

21

2
x
1
x2
2
#14x2

2
x
3
#

63

2
x2
2
x
4
!

189

8
x
1
x2
3
!

71

4
x
2
x2
3
!

1971

4
x2
3
x
4
!

735

8
x
1
x2
4

!

53

4
x
4
x2
4
#

63

4
x
3
x2
4
!21x

1
x
2
x
3
!20x

1
x
2
x
4
#

9

2
x
1
x
3
x
4
#

273

4
x
2
x
3
x
4
. (A.2)

A similar transformation can be used for equation (49) to obtain
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Then, with the aid of Maple, we can "nd the following near identity non-linear
transformation, given by
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to reduce equations (A.2) to equations (A.3). This proves that equations (A.2) and equations
(A.3) (i.e., equations (49) and equations (50)) are indeed equivalent.
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